Rough-fuzzy functions in classification

نویسنده

  • Manish Sarkar
چکیده

This paper generalizes the concept of rough membership functions in pattern classi$cation tasks to rough–fuzzy membership functions and rough–fuzzy ownership functions. Unlike the rough membership value of a pattern, which is sensitive only towards the rough uncertainty associated with the pattern, the rough–fuzzy membership (or ownership) value of the pattern signi$es the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. In this paper, various set theoretic properties of the rough–fuzzy functions are exploited to characterize the concept of rough–fuzzy sets. These properties are also used to measure the rough–fuzzy uncertainty associated with the given output class. Finally, a few possible applications of the rough–fuzzy functions are mentioned. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-Rough Membership Functions - Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on

This paper generalizes the concepts of rough membership functions in pattern classification tasks to fuzz rough membership functions. Unlike the rough membersgp value of a pattern, which is sensitive only towards the rough uncertainty associated with the pattern, the fuzzy-rough membership value of the pattern signlfies the rou h uncertainty as well as the . fuzz uncertainty associated wig it. ...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Fuzzy-Rough Hybridization

Fuzzy sets and rough sets are known as uncertainty models. They are proposed to treat different aspects of uncertainty. Therefore, it is natural to combine them to build more powerful mathematical tools for treating problems under uncertainty. In this chapter, we describe the state of the art in the combinations of fuzzy and rough sets dividing into three parts. In the first part, we first desc...

متن کامل

Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications

Kernel methods and rough sets are two general pursuits in the domain of machine learning and intelligent systems. Kernel methods map data into a higher dimensional feature space, where the resulting structure of the classification task is linearly separable; while rough sets granulate the universe with the use of relations and employ the induced knowledge granules to approximate arbitrary conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2002